Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
  • 目次

Table of Contents

...

  1. MathWorksアカウント画面へ

  2. MATLAB(Individual)の右の下矢印を押してダウンロード画面へ
    ※この際に画面左のリリースを選択からR2022aを選択します。

  3. {Windows, Mac, Linux}用ダウンロードを押してMATLAB R2022aのダウンロードを開始します。

...

Parallel Serverを使用するには、インストール時の製品の選択ではMATLABの他にParallel Computing Toolboxを選択してください。

...

準備3-

...

クラスター構成

Info

MATLAB Parallel Server はVPNを含む学内ネットワークのみの利用となっています。

...

Info

クラスタープロファイルは学内でのみ使用可能です。学外の場合はVPN接続で使用してください。

6. クラスタープロファイルの切り替え(localとa9 Server)

localとa9 Serverの切り替えは、それぞれのクラスタープロファイルについて既定の設定を切り替えて行います。

...

7. 並列処理ありとなしの切り替え

並列処理ありとなしの切り替えは、コマンドにおける'UseParallel',trueを'UseParallel',falseに書き換える。

...

Code Block
tic % Start stopwatch timer
% Input image
input_img = "input_img.jpg"; % Add image path
% Initialize Edge detection function
fun = @(block_struct) edge(block_struct.data,"canny");
% Covert source image from RGB to GRAY
input_image= rgb2gray(imread(input_img));
% Perform Parallel Block Process
result = blockproc(input_image,[25 25],fun, ...
   'UseParallel',false);
toc % Terminate stopwatch timer 
% Show ouput image
imshow(result

並列処理の例

例1:大きな画像に対するブロック処理

input_img.pngをC:\Users\ユーザー名\Documents\MATLABに移す。

...

並列処理なし

並列処理あり

windows

(Local)

windows

(Local)

8 workers

Red Hat Enterprise Linux

(a9 Server)

12 workers

11.97

3.30

2.79

例2:グローバルミニマムの探索

  1. 並列処理ありの場合

    Code Block
    tic % Start stopwatch timer
    % Consider a function with several local minima.
    fun = @(x) x.^2 + 4*sin(5*x);
    fplot(fun,[-10,10])
    rng default % For reproducibility
    opts = optimoptions(@fmincon,'Algorithm','sqp');
    problem = createOptimProblem('fmincon','objective',...
        fun,'x0',3,'lb',-5,'ub',5,'options',opts);
    ms = MultiStart('UseParallel', true);
    %To search for the global minimum, run MultiStart on 2000 instances of the problem using the fmincon 'sqp' algorithm.
    [x,f] = run(ms,problem,2000)
    toc % Terminate stopwatch timer

  2. 並列処理なしの場合

    Code Block
    tic % Start stopwatch timer
    % Consider a function with several local minima.
    fun = @(x) x.^2 + 4*sin(5*x);
    fplot(fun,[-10,10])
    rng default % For reproducibility
    opts = optimoptions(@fmincon,'Algorithm','sqp');
    problem = createOptimProblem('fmincon','objective',...
        fun,'x0',3,'lb',-5,'ub',5,'options',opts);
    ms = MultiStart('UseParallel', false);
    %To search for the global minimum, run MultiStart on 2000 instances of the problem using the fmincon 'sqp' algorithm.
    [x,f] = run(ms,problem,2000)
    toc % Terminate stopwatch timer

  3. 処理時間の比較(単位:秒)

並列処理なし

並列処理あり

windows

(Local)

windows

(Local)

8 workers

Red Hat Enterprise Linux

(a9 Server)

12 workers

6.20

1.70

1.52

例3:SVM分類器による最適化

  1. 並列処理ありの場合

    Code Block
    tic % Start stopwatch timer 
    load ionosphere % Load the ionosphere data set.
    rng default
    % Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization. For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.
    Mdl = fitcsvm(X,Y,'OptimizeHyperparameters','auto', ...
    'HyperparameterOptimizationOptions',struct('UseParallel',true))
    toc % Terminate stopwatch timer

  2. 並列処理なしの場合

    Code Block
    tic % Start stopwatch timer 
    load ionosphere % Load the ionosphere data set.
    rng default
    % Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization. For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.
    Mdl = fitcsvm(X,Y,'OptimizeHyperparameters','auto', ...
    'HyperparameterOptimizationOptions',struct('UseParallel',false))
    toc % Terminate stopwatch timer

  3. 処理時間の比較(単位:秒)

並列処理なし

並列処理あり

windows

(Local)

windows

(Local)

8 workers

Red Hat Enterprise Linux

(a9 Server)

12 workers

32.38

8.23

7.86

例4:並列処理によるデータのクラスタリング

  1. 並列処理ありの場合

    Code Block
    Mu = bsxfun(@times,ones(20,300),(1:20)'); % Gaussian mixture mean
    rn300 = randn(300,300);
    Sigma = rn300'*rn300; % Symmetric and positive-definite covariance
    Mdl = gmdistribution(Mu,Sigma); % Define the Gaussian mixture distribution
    
    rng(1); % For reproducibility
    X = random(Mdl,10000);
    % Specify the options for parallel computing.
    stream = RandStream('mlfg6331_64');  % Random number stream
    options = statset('UseParallel',1,'UseSubstreams',1,...
        'Streams',stream);
    % Cluster the data using k-means clustering. Specify that there are k = 200 clusters in the data and increase the number of iterations. Typically, the objective function contains local minima. Specify 10 replicates to help find a lower, local minimum.
    
    tic; % Start stopwatch timer
    [idx,C,sumd,D] = kmeans(X,200,'Options',options,'MaxIter',10000,...
        'Display','final','Replicates',10);
    toc % Terminate stopwatch timer
  2. 並列処理なしの場合

    Code Block
    Mu = bsxfun(@times,ones(20,300),(1:20)'); % Gaussian mixture mean
    rn300 = randn(300,300);
    Sigma = rn300'*rn300; % Symmetric and positive-definite covariance
    Mdl = gmdistribution(Mu,Sigma); % Define the Gaussian mixture distribution
    
    rng(1); % For reproducibility
    X = random(Mdl,10000);
    % Specify the options for parallel computing.
    stream = RandStream('mlfg6331_64');  % Random number stream
    options = statset('UseParallel',false,'UseSubstreams',1,...
        'Streams',stream);
    % Cluster the data using k-means clustering. Specify that there are k = 200 clusters in the data and increase the number of iterations. Typically, the objective function contains local minima. Specify 10 replicates to help find a lower, local minimum.
    
    tic; % Start stopwatch timer
    [idx,C,sumd,D] = kmeans(X,200,'Options',options,'MaxIter',10000,...
        'Display','final','Replicates',10);
    toc % Terminate stopwatch timer

  3. 処理時間の比較(単位:秒)

...